Course Title

Course Title: Dynamic Spreadsheets as Learning Tools in Science and Math
Credits: Three (3), taught online through Blackboard instruction requiring student interaction for 11 weeks of the term
Instructor: Maggie Niess, niessm@onid.orst.edu, 541-737-1818

Course Description

SED 522, Dynamic Spreadsheets as Learning Tools in Science and Mathematics provides opportunities to explore the algebraic reasoning involved when engaging students in learning with spreadsheets in science and mathematics classes. Students redesign units of instruction for grades 3-12 that integrate learning about designing dynamic and dependable spreadsheets as learning tools in science and mathematics. Explore how dynamic spreadsheets encourage students to extend problems and considering alternative questions.

SED 522 is an elective course in the MS in Science Education and in Mathematics Education, K-12 online program. Thus it is a PTCE course in the Science and Mathematics Education program for inservice teachers.

Course Materials

Textbook from Bookstore:

Workbook sent to Students

Software:
Office tools including spreadsheet

Central Participant Actions During the Course

1. Participants engage in discourse to identify, clarify and defend valid and reliable assessments for guiding learning in an interdisciplinary context of science, mathematics, and technology.
2. Participants investigate key assessment challenges for designing dynamic and dependable spreadsheets as algebraic reasoning tools.
3. Participants investigate activities and assessment that integrate dynamic and dependable spreadsheets to sold problems in mathematics/science educational contexts.
4. Participants and instructors strive to build a community of learners engaged in the exploration of developing a valid and reliable assessment plan within the context of learning in interdisciplinary science, mathematics and technology environment.

Norms for Learning in this Class

One of the challenges for this course is the maintenance of a classroom norm for learning using a Community of Learners in this graduate level class. This challenge means that you must pay attention to the following:

- We want you to form a learning community such that you can share ideas and support each other as you are exploring the course ideas.
- We will provide you with readings (for most part can be read online or downloaded) but want you to also extend beyond the readings that we provide. Consider the OSU Library, your own library and the Internet as a beginning.
We want you to express your opinions and understandings.

We want you to reference the ideas that you use in developing your individual assignments from reading articles, peer discussion and outside resources. This means that you should reference each other’s ideas when you incorporate them in your assignments. If the idea originates with another person, reference that person. If the idea is unique to you, indicate that. Please use the American Psychological Association (APA) conventions in your written work. For the most part, your assignments should include a Reference section that contains the full reference citation. In the body, you will reference these citations.

We want you to synthesize and analyze the ideas in the readings, discussions, etc. rather than summarizing what you have read and discussed. Synthesis means to draw the ideas together, not just repeating the ideas. Analysis means to separate a whole idea into its constituent parts for individual study. In both, you are constructing new knowledge that has not been specifically presented.

We want you to keep in mind that you are in a graduate level class and that the interactions are among professionals from different learning environments.

We want you to relate the new understandings to your personal situations but also extend beyond your personal situation. Some of you are focused on free-choice learning environments; some of you are focused on K-12 learning environments; some of you are focused on community college and college environments. Share your ideas and extend your knowledge to incorporate ideas from the different learning environments. The ideas will help you gain a much richer understanding as a result.

We want you to support each other’s learning by providing feedback on their ideas that is more than “Good job.” Think in terms of helping one another improve each other’s work.

When you receive feedback, make revisions in your work in response to the ideas.

If you are unable to submit an assignment on time, you need to inform the instructors prior to the due date and the instructors need to provide an extension if appropriate.

Since the class is conducted over one quarter, it is essential that you establish and maintain a consistent class presence, throughout each week. You will have multiple ways of inserting your voice in the class:
1. Blackboard’s Discussion board where you communicate with your classmates; you will also be able to attach files to your messages through Blackboard.
2. Links in each week’s expectations that guide the work that you will do.
3. Feedback on assignments along with reviewing your grades through Blackboard’s MyGrades in the Tools link.
4. Communicate with the instructors or individual students using the Blackboard Communication link. Individual student email access is available through the Communication link.
5. Skype is a free web service that allows you to know when each other are online. You can ask questions of those you have agreed to have as a contact person. We encourage you to use this service. We will provide virtual office hours through this service.

The key with these various means of communication is to maintain a consistent class presence where you are a part of establishing and maintaining a community of learners in this course. However it is important to note that the quality of the communication is far more important than the quantity.

Before you begin the work, be sure to download the materials you will need for this unit! Use the download link in this Week Expectations to find them. Many of these downloads provide you with detailed instructions for completing the work during this week.

Student Learning Outcomes

Participants will demonstrate their abilities to:
1) Analyze the use of dynamic and dependable spreadsheets as tools for exploring mathematics and science problems for teaching K-16 content topics: Assessment of achievement is during discussion board assignments, weekly analysis and synthesis assignments and final project.
2) Critique the integration of spreadsheets as learning tools in responding to the National Education Technology Standards for Students (NETS-S, 2000) and the content standards (Mathematics, National Council of Teachers of Mathematics [NCTM], 2000; Science, National Science Education Standards, National
Academy of Sciences, 1996) appropriate to the participant’s teaching environment. Assessment of achievement in this area is weekly in the analysis and synthesis assignments.

3) Evaluate and create spreadsheets as algebraic reasoning tools and analyze integration with respect to relevant content and technology standards for teaching mathematics/science in ways that incorporate an emphasis on developing skills with spreadsheets within the context of the science/mathematics content standards. Assessment of achievement is during discussion board assignments, weekly analysis and synthesis assignments and final project.

4) Create and critique activities and assessments that integrate dynamic and dependable spreadsheets to solve problems in mathematics/science with careful attention to national and state goals and standards for mathematics and science education. Assessment of achievement is during discussion board assignments, weekly analysis and synthesis assignments and final project.

5) Create, design, and critique a curriculum plan for extended unit or integrated within multiple units that integrate learning to design dynamic and dependable spreadsheets with science/mathematics objectives while also scaffolding student learning about spreadsheets as tools for exploring science and mathematics. Assessment of this outcome is primarily through the final project.

Course Schedule

<table>
<thead>
<tr>
<th>Unit</th>
<th>Week</th>
<th>Questions for the Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6/25-6/30</td>
<td>• What are key capabilities of spreadsheets?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• What are the basics of entering and copying a formula from one cell to another in spreadsheets?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Why might spreadsheets be viewed as algebraic reasoning tools?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• How is working with formulas in a spreadsheet related to algebraic reasoning?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• What NETS-S standards and performance indicators are considered in activities focused around activities on the basics of data entry in spreadsheet cells?</td>
</tr>
<tr>
<td>2</td>
<td>7/2-7/7</td>
<td>• What is the difference between absolute referencing and relative referencing when copying formulas from cell to cell?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For what purpose is a dynamic linear function spreadsheet designed? Who should design the spreadsheets – students, teacher for student use, or both student and teacher?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• What are the pros and cons for incorporating scroll bar sliders when creating dynamic spreadsheets?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• How are variables, algebraic reasoning and dynamic spreadsheets linked? Why is it important to have the variables of the problem visible in a dynamic spreadsheet?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• What NETS-S standards and performance indicators are considered in activities focused around activities on the basics of charting of data in spreadsheet cells?</td>
</tr>
<tr>
<td>3</td>
<td>7/9-7/14</td>
<td>• How do the different spreadsheet representations (table, charts and symbolic formulas) help students in communicating mathematical and scientific ideas and making connections among the different representations?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• How does the instructional strategy of integrating spreadsheets as learning tools through thematic units help students learn mathematics/science?</td>
</tr>
<tr>
<td>Week</td>
<td>What evidence might be observed in a thematic instructional unit with respect to five achievement targets: knowledge, algebraic reasoning, performance skills, products and dispositions.</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>How are science and mathematics concept and process objectives embedded in a thematic instructional unit?</td>
<td></td>
</tr>
<tr>
<td>7/16-7/21</td>
<td>What evidence might be observed in a thematic instructional unit with respect to five achievement targets: knowledge, algebraic reasoning, performance skills, products and dispositions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>How can spreadsheets capabilities be used for modeling science/mathematics problems?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>How should instruction be scaffolded so that students are able to design spreadsheets that model mathematics and science problems?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What NETS-S standards and performance indicators are considered in activities framed within themes?</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>What science/mathematics problems can be solved by the design of dynamic and dependable spreadsheets?</td>
<td></td>
</tr>
<tr>
<td>7/23–7/28</td>
<td>What are several basic principles in designing dynamic and dependable spreadsheets to explore mathematics and science ideas?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What algebraic reasoning objectives are involved in the design of dynamic and dependable spreadsheets?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What evidence might be observed in a spreadsheet product to assess specific mathematics and science content as well as dynamic and dependable spreadsheet objectives?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What instructional strategies are useful in engaging students in the design of dynamic and dependable spreadsheet solutions to a specified problem in science/mathematics?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What NETS-S standards and performance indicators are considered in activities focused on designing dynamic and dependable spreadsheets?</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>What are the pros and cons of providing students with a pre-designed spreadsheet to explore, providing students with a pre-designed beginning template to work on a problem, and expecting students to design the spreadsheet from scratch to solve the problem?</td>
<td></td>
</tr>
<tr>
<td>7/30–8/4</td>
<td>How is algebraic reasoning improved through a unit?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What instructional strategies can be used to engage students in algebraic reasoning in a unit where spreadsheets are used to explore science/mathematics ideas?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>How should scoring rubrics be designed to accurately assess students work in a learning environment where they produce spreadsheet products?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What resources are available for identifying and designing problems that engage students in learning to design of dynamic and dependable spreadsheets to solve science and mathematics problems?</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>What curriculum plans can be designed for an extended unit or over multiple units to integrate learning to design dynamic and dependable spreadsheets with science/mathematics objec-</td>
<td></td>
</tr>
</tbody>
</table>
tives that also engage students in algebraic reasoning and mathematical modeling?
• How are students prepared for engaging in learning with spreadsheets prior to the activities involved in the curriculum plans?
• What activities in a science and mathematics curriculum can be created to scaffold student learning about algebraic reasoning along with the general spreadsheet principles and capabilities in the design of dynamic and dependable spreadsheets as tools for exploring science and mathematics?
• What strategies and resources support the assessment of content and spreadsheet objectives throughout the curriculum plans?
• How might teacher develop the knowledge needed for integrating spreadsheets as teaching and learning tools in science/mathematics classes?

Final Project Due Friday August 17

Course Requirements

You must complete all assignments in the course. This includes

1. Maintaining a presence in the course room and making meaningful contributions to the discussions. Your contributions to the discussions are graded activities.
2. Satisfactorily completing each of the technology assignments.
3. Satisfactorily completing the Final Project.

General Grading Criteria for Assignments

Weekly analysis and synthesis assignments are worth 65 points over the designated categories. Final project uses similar categories but is worth 110 points. Students are expected to complete a self-assessment prior to submitting these assignments. This rubric shows the general format for the 65-point scoring rubric.

<table>
<thead>
<tr>
<th></th>
<th>10-9</th>
<th>8-7</th>
<th>6-0</th>
<th>Self Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Contribution</td>
<td>Responds to all expectations</td>
<td>Responds to all expectations but some of them are not complete</td>
<td>1 or more expectations left unanswered</td>
<td>Strong OK Needs work</td>
</tr>
<tr>
<td>Analysis & synthesis</td>
<td>Responses demonstrate deep synthesis and analysis of assigned readings in relation to all topics. References to the readings are clear and adequately cited</td>
<td>Responses include meaningful comments without support from readings OR inappropriate citation.</td>
<td>Responses do not demonstrate understanding of basic concepts in the assigned readings. References to the readings are not included.</td>
<td>Strong OK Needs work</td>
</tr>
<tr>
<td>Reflection</td>
<td>Responses reflect a deep understanding of how all of the materials affect and are affected by the context of one’s own teaching AND students’ learning. Makes connections with substantive and meaningful references to readings</td>
<td>Responses include the context of ones own teaching AND student’s learning. Makes connections with substantive and meaningful references to readings</td>
<td>Responses omit the context of one’s own teaching OR students’ learning OR connections with substantive and meaningful references to readings</td>
<td>Strong OK Needs work</td>
</tr>
</tbody>
</table>
Sharing
Replied to the threads where you have substantive responses to their questions; shared ideas and communicated with others. Sharing extended and communicated beyond the challenges for this sharing assignment that will be helpful in the Saturday assignment.

Communicati on and interaction with Community of Learners
Responses communicate clearly and concisely with correct English conventions in grammar and spelling. Active engagement in the community discussions about this assignment challenges.

Presentation
Makes use of spreadsheet and word capabilities in the presentation

Assignment work ethic and conventions
Completed by due date and follows course instructions

<table>
<thead>
<tr>
<th>Sharing</th>
<th>Commmunicati on and interaction with Community of Learners</th>
<th>Presentation</th>
<th>Assignment work ethic and conventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replied to the threads with responses to the questions; shared ideas and communicated with others. Sharing communicated beyond the challenges for this sharing assignment to be helpful in the Saturday assignment.</td>
<td>Responses communicate somewhat clearly and concisely with some errors in English conventions. Participating somewhat in the community.</td>
<td>Makes some use of the spreadsheet and word capabilities in the presentations. Information is displayed adequately.</td>
<td>Completed by due date and follows course instructions</td>
</tr>
<tr>
<td>Did not participate in the sharing thread</td>
<td>Responses do not communicate clearly, concisely, or with correct English conventions. Little if any participation in the community.</td>
<td>Does not use spreadsheet and word capabilities in the presentation. Information is not displayed adequately.</td>
<td>Late and/or does not follow course instructions</td>
</tr>
<tr>
<td>Strong</td>
<td>OK</td>
<td>Needs work</td>
<td></td>
</tr>
</tbody>
</table>

Total possible: 65

Instructor Grade:
The final project is worth 110 points to be scored using this scoring rubric. Again students are expected to complete a self-assessment prior to submitting the final project.

<table>
<thead>
<tr>
<th>Collection</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responds to all collection requirements, providing clear problems and solutions described clearly in the resource card format</td>
<td>Plan for using the collection is clearly described</td>
</tr>
<tr>
<td>Responds to all collection requirements but some of the resource cards are not complete or the solutions are not provided.</td>
<td>Plan for using the collection is described with</td>
</tr>
<tr>
<td>1 or more requirements is left unanswered</td>
<td>Responses do not demonstrate understanding of basic ex-</td>
</tr>
<tr>
<td>Strong</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>30</th>
<th>15</th>
<th>0</th>
<th>Self Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection</td>
<td>Responds to all collection requirements, providing clear problems and solutions described clearly in the resource card format</td>
<td>Responds to all collection requirements but some of the resource cards are not complete or the solutions are not provided.</td>
<td>1 or more requirements is left unanswered</td>
<td>Strong</td>
</tr>
<tr>
<td>Plan</td>
<td>Plan for using the collection is clearly described</td>
<td>Plan for using the collection is described with</td>
<td>Responses do not demonstrate understanding of basic ex-</td>
<td>Strong</td>
</tr>
</tbody>
</table>
with goals/objectives. Outline of the progression explains clearly how students are developing their knowledge and skill in meeting the goals/objectives. Assessment concerns are considered and explained for prerequisites skills as well as in determining students’ progress in meeting the goals/objectives for the unit. The plan demonstrates an understanding of the instructional ideas in the course.

Reflection

Reflection is a deep understanding of all and even more of the questions that were identified. Reflection makes connections with coursework throughout the term, specifically making meaningful and substantive connections with readings

Reflection provides an understanding of the questions that were identified. Reflection makes connections with coursework throughout the term, specifically making meaningful and substantive connections with readings

Reflection does not provide convincing evidence of an understanding of the questions that were identified. Reflection fails to connect with coursework throughout the term, including with readings

Strong OK Needs work

Communication and Presentation

Responses communicate clearly and concisely with correct English conventions in grammar and spelling. Makes use of spreadsheet and word capabilities in presentation.

Responses communicate somewhat clearly and concisely with some errors in English conventions. Makes some use of the spreadsheet and word capabilities in presentation.

Responses do not communicate clearly, concisely, or with correct English conventions. Does not use spreadsheet and word capabilities in the presentation.

Strong OK Needs work
Grading Procedure

There are 500 points for this course, distributed as follows:

<table>
<thead>
<tr>
<th>Unit, Week</th>
<th>Total percent</th>
<th>Total Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1 – Weeks 1 and 2</td>
<td>26%</td>
<td>130</td>
</tr>
<tr>
<td>(65 points per week)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 2 – Weeks 3 and 4</td>
<td>26%</td>
<td>130</td>
</tr>
<tr>
<td>(65 points per week)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 3 – Week 5 and 6</td>
<td>26%</td>
<td>130</td>
</tr>
<tr>
<td>(65 points per week)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 4 – Weeks 7 and 8</td>
<td>22%</td>
<td>110</td>
</tr>
<tr>
<td>(110 points for final project that is completed during two weeks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>500</td>
</tr>
</tbody>
</table>

Grading Scale

Note to students: Keep a copy of everything you submit. Letter grades for assignments in the course will be determined using the following scale:

- 94% <= A <= 100%
- 88% <= B+ < 90%
- 84% <= B < 88%
- 80% <= B- < 84%
- 60% <= D < 70%
- F < 60%
- 78% <= C+ < 80%
- 74% <= C < 78%
- 70% <= C- < 74%
- F < 60%

All assignments have due dates. Since this course is an online course, the times for submission on those due dates is no later than midnight the identified date. If you need to request an extension for an assignment, a request must be made to the instructor by email prior to the due date. Late points may be deducted at the instructor's discretion.

A letter grade (A, A-, B+, B, B-, C+, C, C-, D, F) is awarded if the student completes all work, including the final project.

Extensions: Students may request an extension or an incomplete because of illness or other extenuating circumstances—if they have been doing acceptable work prior to the request. The instructor will define the requirements and timelines to complete the course. Please Note: Instructors are not obligated to give extensions.

Withdrawal: The OSU policy for student withdrawal requests is governed by the OSU policies that you find at http://ecampus.oregonstate.edu/services/policies-and-regulations.htm The university provides its tuition reduction schedule for 2009-2010 at
Grant funds cannot be used to pay the tuition and fees if a student withdraws from the course prior to completion.

Learning Resources

Oregon State Department of Education Standards for Mathematics: http://www.ode.state.or.us/teachlearn/real/newspaper/Newspaper_Section.aspx?subjectcd=ma

Oregon Mathematics Adopted K-8 Standards http://www.ode.state.or.us/search/page/?subjectcd=ma

Oregon Technology Standards [oregonedtechstandards.rtf](file:oregonedtechstandards.rtf)

Oregon State Department of Education Standards for Science: http://www.ode.state.or.us/teachlearn/real/newspaper/Newspaper_Section.aspx?subjectcd=sc

Oregon State University Library

Click on e-journals for access to electronic journals.

To search for resources relevant to a topic of interest or by a particular author, click on databases and select “education” from menu. From the large array of education databases, a good place to start is ERIC (Educational Resource Information Center). Enter author’s name to find papers by an individual or enter one of an array of descriptors to find papers about a particular topic.

Important to access OSU’s library:

Google Scholar: http://scholar.google.com/schhp?hl=en&tab=ws enter topic. Click on scholar preferences to enter information about OSU’s library in order for URL’s to be notated with availability through the OSU library.

Student Support and Expectations
Statement of Expectations for Student Conduct
http://oregonstate.edu/admin/stucon/achon.htm

Academic Integrity
Students are expected to comply with all regulations pertaining to academic honesty, defined as: An intentional act of deception in which a student seeks to claim credit for the work or effort of another person or uses unauthorized materials or fabricated information in any academic work. For further information, visit Avoiding Academic Dishonesty, or contact the office of Student Conduct and Mediation at 541-737-3656.

Conduct in this online classroom
Students are expected to conduct themselves in the course (e.g., on discussion boards, email postings) in compliance with the university's regulations regarding civility. Students will be expected to treat all others with the same respect, as they would want afforded themselves. Disrespectful behavior to others (such as harassing behavior, personal insults, inappropriate language) or disruptive behaviors in the course (such as persistent and unreasonable demands for time and attention both in and out of the classroom) is unacceptable and can result in sanctions as defined by Oregon Administrative Rules Division 015 Student Conduct Regulations.

Course Completion Policy
A student who registers for a Distance Learning course is assigned a "start date" and an "end date." It is the student's responsibility to note due dates for assignments and to keep up with the course work. If a student falls behind, she/he must contact the instructor and request an extension of her/his end date in order to complete the course. It is the prerogative of the instructor to decide whether or not to grant the request.

Statement Regarding Students with Disabilities
Accommodations are collaborative efforts between students, faculty and Disability Access Services (DAS). Students with accommodations approved through DAS are responsible for contacting the faculty member in charge of the course prior to or during the first week of the term to discuss accommodations. Students who believe they are eligible for accommodations but who have not yet obtained approval through DAS should contact DAS immediately at 737-4098.
http://oregonstate.edu/dept/budgets/genupol/gupdissu.htm

Plagiarism and Expectations for Student Conduct
You are expected to submit your own work in all your assignments, postings to the discussion board, and other communications, and to clearly give credit to the work of others when you use it. Academic dishonesty will result in a grade of “F.” Any student whose work indicates a violation of the OSU Academic Misconduct Policy (cheating, plagiarism) can expect penalties as described in the Dean of Students’ webpage: http://oregonstate.edu/admin/stucon/achon.htm

The following link provides information on writing in general and specific guidance on proper citation techniques. http://ewl.oregonstate.edu/

Civility Policy
The Office of Student Conduct & Community Standards supports the mission of the university by providing programs and services designed to meet the educational and developmental needs of students in relation to community standards, civility, accountability, diversity, respect and truth. For details see: http://ecampus.oregonstate.edu/orientation/success/conduct.htm

Netiquette
Do not use ALL CAPITALS when speaking to someone electronically! This is rude. As you will see after you have been working electronically for a while, all capital letters feel as if someone were shouting at you. Do not write in all bold letters, either. This is rude because it is very hard to read after awhile.

Be cautious with irony, humor, and satire. Do not jump to conclusions about others’ communications and try to mark yours appropriately. The :-) (or smiley) is one tool for this purpose? Remember: You cannot see the people you are communicating with, and they cannot see you. Because you cannot rely on visual cues, you need to exercise an additional measure of care when you communicate online.

If you are truly angry, take a break before responding; get some perspective.

Contribute; do not just consume. Remember that the Internet is largely composed of volunteers. If you only take and never give, you are not adding to the diversity that makes the Internet as rich as it is.

Be sure to spend some time with a new group. Read their messages and catch the flow of conversation before you contribute.

Minimize clutter on the Internet. Think twice before you fire off a message, and keep your messages short and to the point. This is also called “not wasting bandwidth.”

Be polite. Dialogue on a friendly basis.

Financial Aid Policy
If you are receiving financial aid of any kind, it is your responsibility to protect your eligibility to receive financial aid by meeting the requirements of this class.

Change of Contact Information
Please use the student online services at http://oregonstate.edu/students/onlineservices if you have a change in any of your contact information, including name, phone number, and address.

TSPC/PTCE Expecations
Conceptual Framework, Knowledge Base, and National and State
The Professional Teacher and Counselor Education (PTCE) unit Conceptual Framework is based on four foundational or core values that are listed below. To find out more about how the knowledge base relates to the National Council for Accreditation of Teacher Education (NCATE) guidelines, review the Conceptual Framework at the website: http://oregonstate.edu/education/accreditation/

1. Ethics and Professionalism
2. Reflective Practitioner
3. Lifelong Learners
4. Diversity and Equity

With respect to national standards, this course includes application of NCATE content knowledge, professional and pedagogical knowledge and skills, dispositions, and student learning. NCATE Unit Standards: http://www.ncate.org/public/unitStandardsRubrics.asp?ch=4

Oregon TSPC Standards Addressed
The Oregon TSPC Standards embedded in this course include the following:

- Standard 1: Plan Instruction that supports student progress in learning and is appropriate for the developmental level.
- Standard 2: Establish a classroom climate conducive to learning.
- Standard 3: Engage students in planned learning activities.
- Standard 5: Exhibits professional behaviors, ethics, and values.